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Abstract 

With new probabilities, based on the Patterson func- 
tion, for the 'atomic' random variables x l , . . . ,  XN in 
P1, it is shown that an improved estimate can be 
obtained for the sign of the seminvariant E2h in P1. 
Two probability measures are considered. A method 
is also given for the case of a known Patterson vector 
of the form 2rl, giving an estimate for the sign of any 
structure factor Eh by using its first neighborhood. 

1. Introduction 

For deriving joint probability distributions of struc- 
ture factors one has used up to now two conceptually 
different approaches. One is to consider the structure 
factor 

Eh = ~ f exp(21rih, xi) (1) 
i 1 i=l 

as a function of the random variables xl, x 2 , . . . ,  xN; 
the other consists in regarding Eh as a function of 
the random variable b. The first method consists in 
letting the random variables x~, x 2 , . . . ,  xN range uni- 
formly and independently over the unit cell, which 
may be represented mathematically by [0, 1[ 3 [the se t  
of all triples (u, v, w) where 0 - u ,  v, w < l ] .  In this 
paper other probability measures are considered for 
the random variables xt, x2, • • . ,  XN based on the Pat- 
terson function. In" particular, we study the 
seminvariant E2h in P1. 

* Present address: Universit6 du Burundi, Drpartement de 
M~ithematiques, BP 2700 Bujumbura, Burundi. 

0108-7673/85/060613-05501.50 

2. The probability distribution of E2h in P1 for 
different probabilities for X l ,  X 2 ,  • • . , X N 

Several probability measures for Xa, x 2 , . . . ,  XN will 
be considered and used to determine the sign of E2h 
for its first neighborhood. In order to simplify calcula- 
tions we shall treat the case of N equal atoms for 
which the structure factor Eh is given by 

t 
Eh = 2 N  -a/2 ~ cos (2~ri.  b) 

i=l 

(ri ~ [0, 1[ 3 and t = N / 2 ) .  The function Q defined on 
[0, 1[ 3 by 

u ~ [0, 1[ 3 ~ Q(u) = ( ( E ~ -  1) exp ( - 2  7rik. U))k 
(2) 

(where ( . )k  means the average over all reciprocal- 
lattice vectors) gives 

I N 1 if u = [2ri] or u = [ -2r i ]  (1 - i-< t) 

~2N -1 i f u = [ r i - r j ] o r u = [ r i + r j ] o r  

Q ( u ) =  / U = [--ri--r;] ( l <- i,j <- t and i ~ j)  

l0 elsewhere, (3) 

where [x] for x~ •3 denotes the unktue vector in 
[0, 1[ 3, which differs from x by some vector (p, q, r), 
where p, q and r are integer numbers. 

This function Q will be used to construct several 
probability measures on the 'atomic' random vari- 
ables xi(1 -< i --- t). The simplest probability measure 
is obtained as follows. The random variables 
xl, x2, . . . ,  Xu will be taken to be independent. They 
are defined on [0, 1[ 3, equipped with its usual collec- 
tion of Borel sets, by u6 [0, l [3~xi(u)  - u  (1 -< i_< t). 

© 1985 International Union of Crystallography 



614 JOINT PROBABILITY DISTRIBUTIONS OF STRUCTURE FACTORS. I 

We shall now define a probability on the set [0, 1[ 3. 
For any positive integer n let A, denote the set of all 
reciprocal-lattice vectors h = ( h l ,  hz, h3) such that 
- n  -< h i -  n (1 -< i -  3). Define the probability P on 
[0, 113 by 

P(B)= lim f [ ~A E~-I  ,,-,+oo ~ k o N - 1  

q 
exp ( -2rr i (2u) .  k) ]  du, 

(4) 

where B is any Borel set in [0, 1[ 3 {in particular, 
where B is a set of the form [al, b l ]x[a2,  b2]x 
[aa, ba], which is the set of all triples (u~, u2, u3) such 
that ai<-ui<-bi ( i = 1 , 2 , 3 )  and with 0 - < a i - b i < l  
(i = 1, 2, 3)}. It may be noted that P is a convex sum 
of point measures {that is P is of the form P -- ~ h~8~, 
where the summation is over the finite set of Patterson 
vectors a in [0, 1[ 3, 0 < h~ < 1 and ~ h~ = 1, and where 
8, denotes the point measure (or Dirac measure) in 
a with total mass equal to 1}. As usual we shall use 
the symbol [x~ ~ B] to denote the event that xi ~ B 
(more precisely that x~ will take its values in B). We 
then get for the probability, P([xi ~ B]) (where B is 
a Borel set in [0, 113), that xi ~ B: P([xi ~ B]) = P(B) 
and for the mean, e[cos (27rx~. h)], of the random 
variable cos (27rx~. h) for 1 -< i-< t 

e[cos (2zrxi. h)] 

= I cos (2rru. h) dP(u)  

: .m II 
n -~  +oo  k E A n  

× exp [-27ri(2u).  k]} cos (27ru. h) du. (5) 

Hence 

e{cos[27rx,.(2h)]}=(E2-1)/(N-1) (l<_/<_ t) 
(6) 

and e[cos (2rrxi. h)] =0,  if ½h is not a reciprocal vec- 
tor. Let us denote by Eh the random variable 

/~h=2N -~/2 ~ cos (2rrx,.h) (7) 
i = l  

and so we get 

e(/~zh) = N'/2( E~- X )/ ( N - 1). 

Let us denote by P(E2~,) the density distribution of 
the random variable E2h. We may develop P(E2h) 
into an asymptotic series according to powers of 
N -1/2 (Bourbaki, 1961). We then get for the condi- 
tional probability, denoted as usual by P+(E2h), that 
the sign of E2h is positive given E2h = [E2h up tO the 
order N-I~2: 

P+(E2h) =½+½tanh [ E2hI(E~-I)N -~/2] (8) 

(see Appendix). 

It is interesting to note that 

O ' 2 ( / ~ 2 h )  ~- 1 + N-l(E22h - 1). (9) 

Hence, if E~h is not too high the variance O'2(/~2h) 
differs little from the variance 0-2(/~2b) of/52h, which 
equals 1, where the index u in 0-2(/~2h) refers to the 
usual probability measure on xl, x2, • . . ,  xt (t = N/2). 

Consider now the second neighborhood, {EEh, Eh}, 
of E2b [for the notion of neighborhood see e.g. Haupt- 
man (1976)]. Again let us denote by P(E2.h , Eh) the^ 
joint distribution of the random variables EEh and Eh. 
Developing P(E2h, Eh) asymptotically according to 
powers of N -~/2, we then get for the conditional 
probability, denoted by P+^(EEh Eh ), that the sign of 
/~2h is positive given E2u = E2hl and IEhl=lEhl 
(assuming that ½h is not a reciprocal vector) up to the 
order N -~/2" 

P+(E2h]]Eh])=½+½tanh [13IE2u](E~ - 1)N-~/2]]. (10) 

Again let us denote by 0-u(E:hLEh = E h )  the 
conditional variance of E2h given ]Eh ---- Eh for the 
usual probability measure on xl, x2 , . . . ,  x,. Then we 
find, up to the order N -l ,  

0-2(E2h Eh = I E h ) = 0 " . ( E = ~ I I ~ I =  

+ N- '[(E~h-1)-(E~-I)  2] 
(11) 

(see Appendix). So, if E2h - 1 --< (E 2 -  1) 2 we find that 
(up to order N -I) 

0"2(~2hl I~l = I~1) <- 0"u(~2~l Ig~l- I~l). 

Also. note that it is always true that O'2(/~2hl/~h) -< 
2 "¢ o" (E2h) (Barra, 1971). 
These results differ significantly from the well 

known results (Klug, 1948) obtained by letting the xi 
range uniformly over the whole unit cell. Consider 
now the function Q' on [0, 1[ 3 defined by 

u~ [0, 1[ 3 --> Q'(u) = ~ ( E ~ -  1) exp (-2~-iu.  k), 

k (12) 

where the summation is over a finite subset (the 
measured values) of the reciprocal lattice. If there 
are enough terms in (12) then Q' is positive almost 
everywhere. A density function of the xi (1-< i < t) 
for which the x~ are no longer independent random 
variables is a density function proportional to 

I(-I (- Q'(xi-xj)Q'(xi+xj)l (I Q'(2xi) (13) 

where in (13) we have used (by abuse of notation) 
the symbol xi also for the argument in Q'. However, 
(13) does not allow an asymptotic development in 
powers of N-~/2 to calculate the joint density distribu- 
tion of a set of structure factors and we also get 
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multiple averages over the given subset of the 
reciprocal lattice if one calculates the mean 
e[cos 2~rh. (2xi)]. So (13) is not suitable from a prac- 
tical point of view. However, we may still use the 
asymptotic development to calculate the joint density 
distribution if we consider the following density func- 
tion for the variables x~. For the sake of simplicity 
suppose that t (t = N/2)  is a multiple of 2. We may 
then arrange the variables {Xl, X2 , . . .  , Xt} in groups 
of two variables {(xl, x2), (x3,x4), . . . ,  (x,_l, x,)} and 
use as density a function proportional to 

Q'(2xi)Q'(2XE)Q'(x~-x2) (14) 

for any such group [here the group (xx, x2) of two 
variables]. The total density function is then propor- 
tional to 

t/2--1 

1-I [ Q'(2x2i+l)Q'(2x2i+2)Q'(x2i+l-X2i+2)]. 
i = 0  

A A 
Then we get for the mean e(E2h) of E2h 

(15) 

t 

e(/~Eh) = 2 N  -'/2 Y~ e[cos 27rxi. (2h)] 
i = 1  

= N  l12((E~-l)(E22k-1)(E2+k-1))k (16) 
( (E2_ 1)2(E2k_ 1))k ' 

where (.)k means the average over the given subset 
of the reciprocal lattice. Again we may calculate the 
density distribution P(E2h) for this new probability 
with a density given by (15) by using an asymptotic 
development in powers of N -1/2. The main term of 
P(E2u) is also calculated by observing that EEh is 
normally distributed if t is high enough. We then get 
for the probability, denoted by P+(E2h), that the sign 
of/~2h is positive given /72h =-IE2h : 

1 1 rE= IN 
P+(E2h)=2+-2 tanh i_ 0 -2 

((E~--l)(E~k--1)(EZn+k--1))k] (17) 
x ( (E2_  1)2(E2k_ 1)) k , 

A A A 2 
where @2 cr2(E2h) = e(E~h) - e(E2u) is given by 

cr 2= 1 + N -'/2 e(/~4h) - - ( 2 / N ) e ( ~ 2 h )  2 

((E 2-1)(E2k - 1)(E2h+k - 1))k 
"-'1-+ ( ( E 2 -  i)2(E2k-- 1))k 

1)(E~l,--1)(E~,+l,- 1))k] 2. (18) 
- 2  L ( ( E ~ -  1)2(E2k- 1))k 

The averages occurring in (17) and (18) can be calcu- 
lated in the case of no Patterson overlap either directly 
or by considering the random variables Ek, E2k, Eb+k 
as functions of the random variable k [the approach 
of Hauptman & Karle (1958)] and by calculating their 

joint density distribution P(Ek, E2k, Eh+k). We then 
obtain 
N,/2 ((E 2-1)(E2k - 1)(E2+k - 1)),< 

((E2-1)2(E22k-- 1))k 
~-½EEh+(2N-1/E)(EE-1)+O(N-3/2). (19) 

if is Reconsider now tr 2 in (18). We see that ,, e(E4h) 
negative and large in absolute value, tr (EEh) (=O'2) 
becomes very small. Note that in (17) a so-called 
renormalization term [the term ((E 2 -1  )2(E22k - 1))k] 
appears in a rigorous way. This term is positive and 
equals in the case of no Patterson overlap 

( (E  2 -1 )2 (E2k -1 ) )k -~  N - ' ( 6 - 5 N - ' )  • (20) 

(see Appendix). 
We may obtain better estimates of the sign of E2b 

if we consider higher neighborhoods, e.g. the neigh- 
borhood {/~2h,/~h}. Indeed, (17) has been calculated 
by considering only the first neighborhood {/~2h} of 
E2h. Also, P+(E2b ) in (17) should n o t b e  confused 
with the probability that the sign of E2h is positive 
given ]J~Eh[ = [EEhl and given /Tkl = IEk[ for all k. This 
result might be compared with that in the paper of 
Giacovazzo (1976) where a probabilistic treatment 
seemed to be given of the B3,0 formula. (Hauptman 
& Karle, 1958) and the Y~I formula. However, in 
Giacovazzo's derivation no valid argument is given 
for the neglect of all multiple averages over the 
reciprocal lattice in the joint distribution of structure 
factors. In contrast, e(E2h ) in (16) a n d  O'2(22h) in 
(1 8) in the present work have been derived rigorously. 
By abuse of notation we have also used the same 
symbol P+(E2h) in (17) and (8), although they are 
derived from different probability laws for the vari- 
ables xx, x2 , . . . ,  xt. Up to now we have considered 
probability laws for the x~ in which 2xi (and x~-xj 
and x~+xj) do not range uniformly over the set of 
Patterson vectors. A probability law on the x~ in which 
2xi (and xi - xj and x~ + xj) range uniformly over the 
set of Patterson vectors can be constructed as follows. 
Let M be the lowest peak in Q' that may be associated 
with a Patterson vector. Then we might use for each 
x~ (1 - i - t) a density function proportional to 

min[  Q'(2x,), M] (21) 

or more complicated functions. But now all means 
of the form e[cos (27rx~. 2h)] have to be calculated 
numerically. For the density function given by^(21) 
we then get for the probability that the sign of E2h is 
positive given ]/~2h = Ezh: 

P+(E2h) = ½+½ tanh [IE2hie(/72h)/tr2(/~2h)], (22) 

where e(/72b) and tr2(/52h) are calculated numerically 
from the density function on xl, x2 , . . . ,  x, obtained 
from (21). It is interesting to note that by observing 
the peak height in Q [(2) and (3)] we can filter out 
the Patterson vectors of the form 2ri from the others 
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(r~+rj and r~-rj) .  But this can only be done with no 
Patterson overlap. Indeed, consider the B2,o formula 
(Cochran, 1954; Hauptman & Karle, 1958). 

E2h = N'/212(E~,- 1) - N((E~,- 1 )( E2+k - 1 )h,]. 

(23) 

One can easily construct a probability law for 
xa, x2, . . ,  xt such that e(E2h) gives the right side of 
(23) (Brosius, 1979). But this probability law no 
longer remains positive (and thus a probability law), 
even with mild Patterson overlap. Indeed let P~ be 
the probability law ofx~ (as defined by Brosius, 1979) 
and consider the random variables x~ , . . . ,  x, to be 
independent and all having the same probability law 
as x~. But then one has clearly 

P{(xl ~ [0, 113)} = ~ dP~ = 2 ( N -  1 ) -  N ( ( E ~ -  1)2)k. 

(24) 

So that, since ~ dP~ = 1 (the event [x~ ~ [0, 1[ 3] is a 
true event), one has 

2 ( N - 1 ) - N ( ( E E - 1 ) 2 ) k = I .  (25) 

In the case of no Patterson overlap 

((E 2 -  1)2)k = 2-- 3 N - ' .  (26) 

Substitution of (26) in (25) means that the left-hand 
side of (25) then indeed gives (1). But even with mild 
Patterson overlap ( ( E ~ -  1)2h, increases (Hauptman, 
1964) and becomes rapidly greater than 2 - 2 N  -1 so 
that ~dP1 even becomes <0, which is absurd. But 
note that the probability law derived from (15) 
remains a probability law even with Patterson over- 
lap. If a Patterson vector of the form 2r~, say 2rl, is 
known a probability law can be constructed for which 
e(/~h) = Eh (for every h) in the absence of Patterson 
overlap. 

3. The case of known Patterson vectors for P I  

Suppose one knows a Patterson vector of the form 
2rl. Then we may apply the Patterson superposition 
technique (Buerger, 1951). Indeed, theoretically (that 
is without Patterson overlap) one expects that the 
function u-*p(u)p(u+2r l )  or min {p(u),p(u+2ri)} 
with 

P(U)=((E2-1)exp(-2"rr iu .k ) )k  (27) 

will give an image of the real structure. So let us use 
as density function of x2, x3 , . . . ,  x, the function 

~ ( x 2 , . . . ,  x,) = (I /z,(x,), (28) 
i=2 

where/zi(xi) is proportional to 

{ ~ ( E [ - 1) exp [-27rik.  (xi + r l ) ]  } 

x ( ~  ( E : -  1) exp [-27rik.  (xi - r,)]}, (29) 

where the summation is over the finite set of measured 
[Ekl values and where by abuse of notation the same 
symbol xi is used to represent the argument in (29). 
Then one can verify that for the mean e(Eh) (for any 
h) one gets 

e(/~h) = 2 N  -uz cos 27rr~. h+  (N - 2 ) N  -u2 

( ( E ~ - 1 ) ( E ~ + k - 1 )  cos [2~-rl (h + 2k)])k 
X 

( ( E ~ -  1) 2 cos 27rr~. (2k))k (30) 

In the case of no Patterson overlap the right-hand 
side of (30) is E,h. In this way we can get the density 
distribution of Eh (the first neighborhood of Eh) and 
one can calculate, using the asymptotic development, 
the probability that the sign of E h is positive given 
/~hl = Es. A similar expression to that in (30) can be 

found in Heinerman, Krabbendam & Kroon (1975). 
In a future publication the space group P1 will be 

dealt with. 

I am very grateful to Dr H. Hauptman for his many 
valuable comments. 

A P P E N D I X  

1. Derivation of (8) and (9) 

The joint distribution P(E)  of /~2h is normally dis- 
tributed for N high enough. So 

^ 2 "~ P(E)ocexp{-[E-e(EEh)]2 /2 tr  (E2h)}. (A.1) 

Also 

e( E2h) = 2 S  -1/2 ~ e{cos[27rx,. (2h)]} 
i=1 

= N 1 / 2 ( E E - 1 ) / ( N - 1 ) ~ - ( E ~ - I ) N  -1/2 
(A.2) 

and 

0"2( /~2h)  = e ( / ~ 2 h )  --  e ( J ~ 2 h )  2 

= el1 + N-U2E4n+4N -1 ~ ~ cos (27rx,. 2h) 
i j 

x cos (2rrxj. 2h)]--[e(/~2h)] 2 

= 1 + N-U2e(E,4h) 

+ 4 N - 1 ~  e(cos (2¢rx,. 2h)) 
i j 
i ~ j  

x e(cos 27r (xj. 2h)) - [  e(E2h) ]2 

= l+(EE2h - 1 ) / (U--  1) 

+ 4 N - I ( N / 2 ) ( N / 2 - 1 )  

x ( E ~ - I ) 2 / ( N - 1 )  2 

- N ( E 2 - 1 ) 2 / ( N - 1 )  2 

-~ 1 + (E~h-- 1 ) / ( N -  1). (A.3) 
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So 

P(E)  oc exp {[ E - N-X/2(E2h - 1)]2 

×½[I+(EZzh-1) / (N-1)]-~} .  (A.4) 

Hence it follows that 

P+(E2a) = 1 ~+~ tanh { E2hI(E~- 1)N "~/2 

×[1 +(E2Zh - 1 ) / ( N -  1)] -1} 

"--½+½tanh [ E2h](E~-I)N-~/;]. (A.5) 

2. Derivation of (10) and (11) 

Calculate the joint density P(E~, E2), where EI -" E2h 
and E 2 = Eh. 

P(E1, E2) ec [ exp ( - i u E . , -  iVEE)~p(u, v) t du dv 
.I 

q~(u, v) = e[exp (2iuN -x/2 cos 2wxl. 2h 

+2ivN  -1/2 cos 2~rxl. h)]. 

Then we obtain 

~p(U, O ) = [ 1 - ( u 2 / N ) + ( U 4 / 4 N 2 ) ]  

(A.6) 

x [ 1 - (v21 N ) +  (v414N2)] 

+ [ 2 i u ( N -  1)-' N-1/2] (E 2-1)  - iuv 2 N -3/2 

- iu 3 N-5/2(E 2 - 1) - 2iuv 2 N-5/2(E 2 - 1) 

+ ( i /2)u 3 yEN -5/2 + ( i /6)uv4N -5/2 

- (  i~ 3 )u 3 N-5/2( E]h - 1 ) 

- [ u 2 / N ( N -  1)](E2h - 1) 

- [ v 2 /  N ( N -  1)](E 2 - 1 ) +  O(N-3).  
(A.7) 

Hence 

exp [(N/2)  In ~o(u, v)] 

=exp [ ( -u2 /2 ) - (v2 /2 ) ]{1  + iuN-X/2(E 2 - 1 )  

- i u v 2 N - ' / 2 / 2 - ( u Z / 2 N ) [ ( E ~ h  - 1)+ (E~-  1) 2] 

-- 2 4 / 8 N  - v 4 / 8 N  - t l 2 v 4 / 8 N  

-- ( D 2 / N ) ( E  2 - 1) + O( N-3/2)}.  (A:8) 

Using the formulae 

H,,(x) exp (-½x 2) 

= ( 2 ~ ) - ' / 2 I + ° ° ( i u ) " e x p ( - ½ u 2 - i u x )  d u _  

(2w) -1/2 exp(-x2/2)H, , (x)Hm(x)dx=6, ,mn! ,  

(A.9) 

one gets 

P(E1, E2) oc exp (-~Ell 2_~E2)1 2 

x { 1 + E~(E 2 - 1) N -1/2 +½E,(E~- 1) N -1/2 

+ [ (E~-  1) /2N] (E~h-  1 + ( E ~ -  1) 2) 

- H 4 ( E 1 ) / 8 N -  H4(E2)/8N 

- ( E ~ - I ) ( E ~ - I ) / 8 N  

- ( E ~ -  1)(E~- 1 ) / N +  0(N-3/2)}.  

So we get 

e(/~2h /~h) -- N-~/2[ (E2-1)  +~(Eh-- 1 ) ] 1  ^2 
A 

x {1 - [H4(Eh) /8N]  
A 2 

- ( E h - 1 ) ( E 2 - 1 ) / N }  -x 

+ 0 ( N - 3 / 2 ) .  

So 

(A.10) 

(A.11) 

~(E2,llgh--lE~l) -a~r-,/2r~2-2~, , ~ , - 1 )  (A.12) 
and 

~2(E2,1 Eh = [E, )=  ~2(E2, IA g,[ = [Eh[) 
+ N - ' [ E ~ h -  1--(E2h - 1)21 

+ 0(N-3/2) ,  (A.13) 

where, up to the order N -~, 
2 A w.(E2hl Eh[ = Eh[)= 1 -(1/4N)(E~- 1) 

- ( 1 / 4 N ) ( E 2 - 1 )  2. (A.14) 

3. Derivation of (19) and (20) 

Direct calculation gives 

((E 2-1)(E~k-- 1)(E~+k-- 1))k 

~-- N-112N-1/2E2h + 4 N - I ( E ~ -  1 ) 

- 9N-3/2E2h] 

( ( E  2 - 1 ) 2 ( E 2  k -  l))k ~'~ N - ' ( 6 -  5N- ' ) .  

(A.15) 

Using the two formulae given by (A.15), one derives 
immediately (19). 
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